Editor: PhilTurner, ECOVAST

May 2014

'''Balance of Power: The case for renewable energy for Europe''' (link corrected in 2019)

February 2014 (UPDATE 2018)    

Ralf Bokermann of ECOVAST Germany has produced a paper on Renewable Energy in the European Union. Available in German Language as pdf and as tText only version below in English.

Old Version from 2014: http://www.dorfwiki.org/upload/PhilTurner/EEnergien.pdf

Current updated Version: Eine überarbeitete deutsche Fassung von 2018 ist hier:

ENGLISH 2014 Version without diagrams

Ralf Bokermann

Renewable energy in the EU Online - Work 1/2014    

1 General aspects of conversion

1.1 change as an economic and political goal

The energy sectors are described as renewable, which are essentially derived from various forms of converted solar energy and used. As solar energy reaches the earth continually , the term "renewable energy" justified by the permanent renewal ago . Utilized forms of converted solar energy are : organic substances of plant or animal origin (biomass ) -water and wind energy as well as directly from solar radiation derived solar power (via photovoltaic ) and solar thermal (using solar panels ) . A non- dependent on the solar radiation energy form is the use of geothermal energy ( geothermal energy).

The gradual shift from fossil fuels to renewable forms of energy is once effected by changing market prices , on the other political objectives . Sharp rise in market prices have developed due to limited supplies , especially when fuels such as oil ( 12, p 11). Policy objectives to move away from fossil fuels are due to the extent assignable , partly probable massive damage to the global environment . Another policy goal in many countries is a reduced dependence on imported fossil fuels.

A global program of action , which include the shift to renewable energies includes ( "Agenda 21") , was adopted in 1991 by the United Nations ( 4, pp. 248 ff.) Motivated by the steps already made the change , the European Union ( EU) in 2009 binding targets for 2020 to reach proportion with a " Renewable Energy Directive " adopted (8).

With regard to these objectives renewable forms of energy benefits , but also aggravating features can be assigned. Unrestricted preference is that based on solar and wind power forms are practically inexhaustible. Further, the effects on the environment are relatively low. However, a feature of both forms is the uneven energy accumulation due to fluctuating solar radiation and wind movement. Since both forms of energy are used almost exclusively for power generation, the changing energy supply compared to continuous , fossil fuel power plants is a distinct disadvantage . When fully renewable energy supply with two forms therefore balancing power plants are needed - or a trans-regional equalization. This requires automated network functions, ensuring the balance . In contrast to the above forms of biomass is not available in unlimited quantities . Once the land area is limited in itself, on the other hand it is needed with an increasing share of food production. Biomass but has to be storable both as a fixed mass as well as biogas and biofuels the advantage over time. Therefore, biomass capable of breaking the unevenly resulting wind and Solar power balance due to switchable bio- power plants. Concepts for a sole power supply with renewable energies , therefore, see the complementary use of all forms of energy (cf. 20 , pp. 113 ff.) - Further concepts involve making use of phased accumulating excess wind energy for the production of hydrogen and methane gas. Both products would be used for the operation of the necessary balancing power plants (23). - An occasionally limiting factor for conversion to renewable energy may be the significant capital requirements. It is also noted the considerable planning and management capacity. As a constant limiting the tolerable energy prices are effective.

1.2 Achievements conversion and target values ​​in the EU In the last two decades , renewable energies have already achieved a significant share of global primary energy production (13 , p 9). A high proportion is in the regions of the world mainly use traditional forms of energy, such as firewood and other biomass. This is notably the case for Africa and parts of Asia ( 3, p 80). In Europe , North America and China , this proportion is significantly lower. Here, the technologically sophisticated , sustainable renewable energy forms in the foreground. With the already mentioned " Renewable Energy Directive " each EU member state has received a frame target for the gradual conversion . Respect, the present sketch may help to provide information on the progressive achievement of objectives. - First, a general overview of the state of renewable energy in 2011 is given. The Fig.1 shows the share of all energy sources in the total production of primary energy again (point A). as seen wearing the renewable energy sector, with 20% of primary production at . Be placed opposite the shares of renewable energy sectors , with which 20% of primary energy are generated . By far the largest proportion is made of biomass , followed by water and wind energy . Lower levels indicate the use of solar and geothermal energy ( geothermal) . The "Renewable Energy Directive " gives the EU targets for 2020 not on the basis of the generated primary energy , but for the final energy. This represents the available energy without further losses corner shows the following data series therefore refer to the term final energy. The Table 1 gives for selected countries of the EU final energy consumed whole as well as the share of renewable forms of energy again . Furthermore, the agreed target for 2020 is given. The countries were selected with an already relatively high in 2011 share of renewable energies . In the EU as a whole is still a significantly increased proportion required to achieve the target average contribution of 20 %. This is also true for the larger EU countries, such as France, Germany and Spain. In contrast, the majority of the relatively smaller countries has of the target figure approached already stronger. 1.3 Significance of forms of energy About an exceptionally high share of renewable energies have countries like Sweden, Latvia and Finland. The Table 2 gives approximate ascertain what forms of comparatively high value of renewable energy is achieved. Unfortunately, no data on the share of renewable energy forms in total production of final energy are (according to the request from the European Statistical Office) currently available. Therefore, the overview is 2 shares renewable forms of energy on the important business of power generation again . For the EU as a whole - and especially for those countries with a high proportion of renewable energy - hydropower is by far the main source of energy. This includes in particular Latvia , Romania, Austria and Sweden. Due to geographical conditions , hydropower is here partly for decades the main source of electricity. In countries with lower significance of the historical part hydropower , wind energy , partly by the use of biomass is the most important renewable source of power. The importance of biomass in Finland is based mainly on the use of wood forms . The photovoltaic plays out in climatically favored countries, such as Italy and Spain, especially in Germany a significant role . This shows - at the other data series more clearly expectant facts - that Germany has the largest ( in measurement units) degree of expansion of renewable forms of energy. This has primarily politically motivated , targeted and massive support for the " Renewable Energy Law " causes (2). In most countries of the EU Photovoltaics has less significance . However, it is likely that the generation of solar power will reach in all countries with larger proportions suitable locations . - The use of geothermal energy has only small amounts of the provision of energy in the EU. 2. Renewable forms of energy in selected countries 2.1 contribution of wind energy Wind energy has in most European countries a high potential for power generation ( 15, p 14 ff.) Worldwide, China , the USA, Germany and India, the countries with the largest installed capacity ( 20, p 240). On the relative merits of the two variants land and marine locations can not be discussed here . The Figure 2 illustrates the use of wind power for the countries of the European Union who have installed over 1 million megawatts ( MW). In addition to the suitability of the site installable peripheral , among others , also depending on the area size of the country. The larger area countries therefore have the greater amount of installed wind use . The share of electricity supply with wind power is in terms of area smaller countries , such as Denmark and Portugal, however, significantly higher ( 9, p 11). Wind power is like hydropower, renewable energy division , with which can be produced when conditions in the interior at a competitive cost ( 1, pp. 7 ff.) With a further expansion could therefore without appreciably higher electricity costs , a progressive replacement of fossil fuels can be achieved. 2.2 Solar Energy Solar energy is renewable source of energy , the solar radiation directly into usable forms - electricity and heat - converts . As Table 2 shows , the average contribution to electricity generation in the EU is lagging behind the other , renewable sources. - The total solar energy gained comprises the two forms of solar power and solar heat . Both are uses of the Fig 3 the installed services again . With the exception of Austria , Portugal and Greece predominates in the other countries, by far the most use by solar power. For the generation of electricity are smaller units such as rooftop systems with a network connection, widely used, for example. Larger units are installed items reclassified for solar installations on surfaces. Increasing importance is expected for smaller systems, which are designed for the prime power consumption - even this rule with the network connection (12, pp. 91 ff.) - The production of solar heat is primarily used for heating of water, to a lesser extent for feeding into the heating of buildings. The cost of solar power and heat generation move in a relatively wide margin - as with other forms of renewable energy as well. Important parameters for the cost range are size, income and location -specific investments of the system. In typical Central European locations and roof systems, the cost range moves by about 25% below and above of 0.20 € / kWh (16 , pp. 238 ff , 20 , pp. 151 ff.) Develops the rate of technical progress to a similar extent as in the past, further, this should lead to significantly reduced costs. In this case, the PV due to large , suitable buildings and open spaces make a significant contribution to higher power than previously thought (16 , pp. 251 ff.) 2.3 bioenergy The total area of bioenergy and several types of biogenic sources : ─ solid biomass, such as wood or processed into pellets substance; ─ liquid biomass such as vegetable oil or obtained by fermentation of ethanol; ─ gaseous biomass, such as biogas ; ─ biogenic components of the waste are another variant. Information on the energy with forms of biomass into achievable statistics The use of biomass for power generation in selected countries is the overview 2 below . A list of EU countries with production of biogenic fuels are the Figure 4 again . The amounts listed include the production of biodiesel and bioethanol. It turns out that the larger EU countries produce with the appropriate number of motor vehicles and most units of energy from biofuels . - The "Renewable Energy Directive " of the European Union shall, in the individual measures for the transport sector fixed binding targets . So to 2020 at least 10 % of the final energy of this sector come from renewable sources (8 ) . The use of biofuel from processed vegetable oils and grains is controversial and sometimes quite critical. The representation of a personal view would exceed the limits given here . Reference is therefore made to the relevant literature (eg 12 , pp. 108 ff , 14 , pp. 72 ff.) The Directive of the EU to the legitimate criteria is supported by detailed guidelines for sustainable production and use of biofuels bill. These requirements also apply to imported components. Proceeding is a reduction of the planned share of biofuels provided and their replacement by other forms of renewable energy in the transport sector. 3 3.1 Economic Aspects sales and employment The entire the renewable energy sector is dominated echnologies to any significant extent by new T. Echnologies New T usually open up new areas with new jobs and associated economic processes. For a discussion of these performance factors usually remains open to what extent replaces existing, old sectors of the economy and whether an expansion of economic processes has been reached. This question remains below for the renewable energy also open. The Fig.5 is for the EU in point A, the sales achieved in 2011 by renewable forms of energy again. The different price level of energy forms causes shift the relations compared to those produced energy units (see Table 2) significantly. To have solar power and biofuels to higher sales as final energy shares. Another difference arises from the fact that sales of larger hydropower plants are not obviously recognized. The number of employees has significant deviations from the revenue share of energy forms. This is evidence of a different labor productivity in the economic sectors that make up the economic environment of the forms of energy.

3.2 turnover and value added in selected countries The Figure 6 shows the revenue generated from renewable energy sources for selected countries again. Furthermore, two variants of the estimated value are given, alternatively for 20% and 30% of the revenue generated. These variants cover the probable central region of the recoverable value rates. The term includes the value (after deducting the operating expenses of sales) the remaining total income in activity (cf. 21, pp. 82 f.)

In addition to winning the value includes the earned wages (labor costs), credit interest, rents and taxes to be paid. Compared to large industries, renewable energy supply taken a modest but significant contribution to overall economic output.

DEUTSCH Sprachversion ohne Abbildungen

Ralf Bokermann Erneuerbare Energien in der EU Online – Arbeit 1 / 2014

1. Allgemeine Aspekte einer Umstellung

1.1 Umstellung als wirtschaftliches und politisches Ziel

Als erneuerbar werden die Energiesparten bezeichnet, die im Wesentlichen aus verschiedenen Formen umgewandelter Sonnenenergie gewonnen und genutzt werden. Da Sonnenenergie die Erde stetig erreicht, ist der Begriff „Erneuerbare Energien“ von der dauerhaften Erneuerung her gerechtfertigt. Genutzte Formen umgewandelter Sonnenenergie sind: - Organische Stoffe pflanzlicher oder tierischer Herkunft (Biomasse) – Wasser- und Windenergie – sowie unmittelbar aus Sonnenstrahlung gewonnener Solarstrom (mittels Photovoltaik) und Solarwärme (mittels Solarkollektoren). Eine nicht von der Sonnenstrahlung abhängige Energieform ist die Nutzung der Erdwärme (Geothermie). Der schrittweise Wechsel von fossilen zu Erneuerbaren Energieformen wird einmal von sich verändernden Marktpreisen, zum anderen von politischen Zielen bewirkt. Deutlich angestiegene Marktpreise haben sich aufgrund begrenzter Vorräte vor allem beim Energieträger Erdöl entwickelt (12, S. 11). Politische Ziele zur Abkehr von fossilen Energieträgern sind durch die teils belegbaren, teils wahrscheinlichen Massivschäden für die globale Umwelt begründet. Ein anderes politisches Ziel vieler Länder ist eine verminderte Abhängigkeit von importierten, fossilen Energieträgern. Ein weltweites Aktions- Programm, das u. a. die Umstellung auf Erneuerbare Energien beinhaltet („Agenda 21“), ist 1991 durch die Vereinten Nationen verabschiedet worden (4, S. 248 ff.). Durch die bereits erfolgten Schritte der Umstellung motiviert, hat die Europäische Union (EU) im Jahre 2009 verbindliche Zielwerte für den bis 2020 zu erreichenden Anteil mit einer „Erneuerbaren- Energien- Richtlinie“ beschlossen (8). Mit Blick auf diese Ziele können den Erneuerbaren Energieformen Vorzüge, aber auch erschwerende Merkmale zugeordnet werden. Uneingeschränkter Vorzug ist, dass die auf Solar- und Windkraft basierenden Formen praktisch unerschöpflich sind. Ferner sind die Wirkungen auf die Umwelt relativ gering. Ein Merkmal beider Formen ist jedoch der ungleichmäßige Energieanfall infolge schwankender Sonnenstrahlung und Windbewegung. Da beide Energieformen fast ausschließlich der Stromerzeugung dienen, ist das wechselnde Energieangebot im Vergleich zu kontinuierlich arbeitenden, fossilen Kraftwerken ein deutlicher Nachteil. Bei vollständiger Energieversorgung mit beiden erneuerbaren Formen werden daher Ausgleichs- Kraftwerke benötigt – oder ein überregionaler Ausgleich. Dies bedingt automatisierte Netzfunktionen, die den Ausgleich sicherstellen. Im Gegensatz zu den genannten Formen ist Biomasse nicht unbegrenzt verfügbar. Einmal ist die Landfläche an sich begrenzt, zum anderen wird diese mit wachsendem Anteil zur Nahrungserzeugung benötigt. Biomasse hat aber sowohl als Festmasse als auch als Biogas und Biokraftstoff den Vorteil, über längere Zeit speicherfähig zu sein. Biomasse befähigt daher dazu, den ungleichmäßig anfallenden Wind- und Solarstrom durch zuschaltbare Bio- Kraftwerke auszugleichen. Konzepte für eine alleinige Stromversorgung mit Erneuerbaren Energien sehen daher den sich ergänzenden Einsatz aller Energieformen vor (vgl. 20, S. 113 ff.). - Weitergehende Konzepte beinhalten, phasenweise anfallende, überschüssige Windenergie für die Herstellung von Wasserstoff und Methangas zu nutzen. Beide Produkte wären für den Betrieb der notwendigen Ausgleichs- Kraftwerke einsetzbar (23). – Ein fallweise begrenzender Faktor für die Umstellung auf Erneuerbare Energien kann der erhebliche Kapitalbedarf sein. Zu beachten ist ferner die beachtliche Planungs- und Verwaltungskapazität. Als stete Begrenzung sind die tolerierbaren Energiepreise wirksam.

 Abb. 1: A: Anteile aller Energieträger an der erzeugten Primärenergie in der EU (Stand 2011). B: Aufteilung des Beitrags Erneuerbarer Energien nach Energieformen 2011. (Quelle: 22).

1.2 Erreichte Umstellung und Zielwerte in der EU In den letzten beiden Jahrzehnten haben die Erneuerbaren Energien bereits einen nennenswerten Anteil an der globalen Erzeugung von Primärenergie erreicht (13, S. 9). Ein hoher Anteil besteht in den Weltregionen, die vor allem traditionelle Energieformen nutzen, wie Brennholz und andere Biomasse. Dies trifft u. a. für Afrika und Teile von Asien zu (3, S. 80). In Europa, Nordamerika und China ist dieser Anteil deutlich geringer. Hier stehen die technologisch anspruchsvollen, zukunftsfähigen Erneuerbaren Energieformen im Vordergrund. Mit der bereits angeführten „Erneuerbaren- Energien- Richtlinie“ hat jedes Mitgliedsland der EU ein Rahmenziel für die schrittweise Umstellung erhalten. Insofern kann die vorliegende Skizze zur Information über die fortschreitende Zielerreichung beitragen. – Zunächst wird ein genereller Überblick zum Stand der Erneuerbaren Energien im Jahre 2011 gegeben. Die Abb.1 gibt die Anteile aller Energieträger an der Gesamterzeugung von Primärenergie wieder (Ziffer A). Wie ersichtlich, tragen die Erneuerbaren Energien mit 20% zur Primärproduktion bei. Gegenüber gestellt werden die Anteile der Erneuerbaren Energiesparten, mit denen 20% Primärenergie erzeugt werden. Der weitaus größte Anteil wird von Biomasse gestellt, es folgen Wasser- und Windenergie. Geringere Anteile weisen die Nutzung von Solarenergie und Geothermie (Erdwärme) auf. Die „Erneuerbare- Energien- Richtlinie“ der EU gibt die Zielwerte für 2020 nicht anhand der erzeugten Primärenergie, sondern für die Endenergie an. Diese stellt die ohne weitere Verluste verfügbare Energie dar. Alle folgenden Datenreihen beziehen sich daher auf den Begriff Endenergie.  1) TWh = Terawattstunden. Übersicht 1: Verbrauch an Endenergie und Anteile Erneuerbarer Energien sowie deren Zielwerte für 2020 in ausgewählten Ländern der EU. (Quellen: 7; 8).

Die Übersicht 1 gibt für ausgewählte Länder der EU die verbrauchte Endenergie insgesamt sowie den Anteil der Erneuerbaren Energieformen wieder. Ferner ist der vereinbarte Zielwert für das Jahr 2020 angegeben. Ausgewählt wurden die Länder mit einem bereits 2011 vergleichsweise hohen Anteil der Erneuerbaren Energien. In der EU insgesamt ist noch ein deutlich gesteigerter Anteil erforderlich, um den mittleren Zielbeitrag von 20% zu erreichen. Dies gilt ebenso für die größeren Länder der EU, wie Frankreich, Deutschland und Spanien. Dagegen hat die Mehrzahl der relativ kleineren Länder sich dem jeweiligen Zielwert bereits stärker genähert.

1.3 Stellenwert der Energieformen Über einen herausragend hohen Anteil Erneuerbarer Energien verfügen Länder wie Schweden, Lettland und Finnland. Die Übersicht 2 gibt näherungsweise Auskunft, mit welchen Formen der vergleichsweise hohe Stellenwert der Erneuerbaren Energien erreicht wird. Leider sind (laut Anfrage beim Europäischen Amt für Statistik) gegenwärtig keine Daten über die Anteile der Erneuerbaren Energieformen an der Gesamterzeugung von Endenergie verfügbar. Daher gibt die Übersicht 2 die Anteile der Erneuerbaren Formen an der wichtigen Energiesparte der Stromerzeugung wieder.

1) TWh = Terawattstunde; 2) Einschl. Bioanteil v. Abfall; 3) Einschl. 0,5 TWh von Gezeiten- Kraftwerk; 4) Einschl. 1,3 TWh v. Solar- Kraftwerken. Übersicht 2: Stromerzeugung mit erneuerbaren Energien in der EU (Stand 2011) und Beiträge der Energieformen in ausgewählten Ländern. (Quellen: 3, S. 61; 7).

Für die EU insgesamt – und insbesondere für die Länder mit hohen Anteilen Erneuerbarer Energien – ist die Wasserkraft die bei weitem wichtigste Energiequelle. Dies gilt u. a. für Lettland, Rumänien, Österreich und Schweden. Aufgrund geografischer Gegebenheiten ist Wasserkraft hier teilweise seit Jahrzehnten die wichtigste Quelle für Elektrizität. In Ländern mit geringerer Bedeutung der historischen Wasserkraft ist teils die Windenergie, teils die Nutzung von Biomasse die wichtigste erneuerbare Stromquelle. Der hohe Stellenwert von Biomasse in Finnland gründet sich vorwiegend auf Formen der Holznutzung. Die Photovoltaik spielt außer in klimatisch begünstigten Ländern, wie in Italien und Spanien, vor allem in Deutschland eine nennenswerte Rolle. Hier zeigt sich – der bei weiteren Datenreihen noch deutlicher werdende Sachverhalt - dass Deutschland den (in Messeinheiten) größten Ausbaugrad an Erneuerbaren Energieformen aufweist. Dies hat in erster Linie die politisch motivierte, gezielte und massive Förderung nach dem „Erneuerbare- Energien- Gesetz“ bewirkt (2).

In den meisten Ländern der EU hat die Photovoltaik geringere Bedeutung. Es ist aber wahrscheinlich, dass die Erzeugung von Solarstrom in allen Ländern mit geeigneten Standorten größere Anteile erreichen wird. – Die Nutzung der Erdwärme hat in der EU nur geringe Anteile an der Bereitstellung von Energie.

Abb. 2: Installierte Leistung in Windenergie- Anlagen in EU- Ländern mit hohem Ausbaugrad (Stand: 2012). (Quelle: 9, S.4).

 2. Erneuerbare Energieformen in ausgewählten Ländern 2.1 Beitrag der Windenergie Die Windenergie hat in den meisten Ländern Europas ein hohes Potential für die Stromerzeugung (15, S. 14 ff.). Weltweit sind China, die USA, Deutschland und Indien die Länder mit der größten installierten Leistung (20, S. 240). Auf die jeweiligen Vorzüge der beiden Varianten Land- und Meeresstandorte kann hier nicht eingegangen werden. Die Abb. 2 stellt die Nutzung der Windkraft für die Länder der EU dar, die über 1 Mill. Megawatt (MW) installiert haben. Neben der Standorteignung hängt der installierbare Umfang u. a. auch von der Flächengröße des Landes ab. Die flächenmäßig größeren Länder haben daher den stärkeren Umfang an installierter Windnutzung. Der Anteil an der Stromversorgung mit Windkraft ist in flächenmäßig kleineren Ländern, wie Dänemark oder Portugal, allerdings deutlich höher (9, S. 11). Windkraft ist wie Wasserkraft die Erneuerbare Energiesparte, mit der bei mittleren Bedingungen im Binnenland zu wettbewerbsfähigen Kosten produziert werden kann (1, S. 7 ff.). Mit einem weiteren Ausbau könnte daher, ohne nennenswert höhere Stromkosten, ein fortschreitender Ersatz fossiler Energieträger erreicht werden.

2.2 Solarenergie Die Solarenergie ist die erneuerbare Kraftquelle, die Sonnenstrahlung unmittelbar in nutzbare Formen – Strom und Wärme – umwandelt. Wie die Übersicht 2 zeigt, steht der durchschnittliche Beitrag zur Stromerzeugung in der EU hinter den anderen, erneuerbaren Quellen zurück. – Die insgesamt gewonnene Solarenergie umfasst die beiden Formen Solarstrom und Solarwärme. Für beide Nutzungsformen gibt die Abb. 3 die installierten Leistungen wieder. Mit Ausnahme von Österreich, Portugal und Griechenland überwiegt in den anderen Ländern bei weitem die Nutzung durch Solarstrom.

Für die Stromgewinnung sind kleinere Einheiten, wie z. B. Dachanlagen mit Netzanschluss, weit verbreitet. Größere Einheiten sind u. a. auf für Solaranlagen umgewidmeten Flächen installiert. Zunehmende Bedeutung wird für kleinere Anlagen erwartet, die für den vorrangigen Eigenverbrauch ausgelegt sind - auch diese im Regelfall mit Netzanschluss (12, S. 91 ff.). – Die Gewinnung von Solarwärme dient überwiegend zur Erwärmung von Brauchwasser, in geringerem Umfang zur Einspeisung in die Gebäudeheizung.

 Abb. 3: Länder mit dem größten Umfang an installierter Solarenergie in der EU (Stand: Ende 2012). (Quellen: 3, S. 68 u. 71; 17; 18).

Die Kosten der solaren Strom- und Wärmegewinnung bewegen sich in einer relativ breiten Spanne – wie bei anderen Formen der Erneuerbaren Energien auch. Wichtige Parameter für die Kostenspanne sind Größe, Ertragsstandort und spezifische Investitionen der Anlage. Auf typischen mitteleuropäischen Standorten und bei Dachanlagen bewegt sich die Kostenspanne um etwa 25% unter- und oberhalb von 0,20 €/ KWh (16, S. 238 ff.; 20, S. 151 ff.). Entwickelt sich die Rate des technischen Fortschritts in ähnlichem Umfang wie in der Vergangenheit weiter, dürfte dies deutlich verringerte Kosten bewirken. In diesem Fall kann die Photovoltaik aufgrund großer, geeigneter Gebäude- und Freiflächen einen nennenswert höheren Beitrag zur Stromversorgung leisten, als bisher angenommen (16, S. 251 ff.).

2.3 Bioenergie Die Gesamtsparte der Bioenergie umfasst mehrere Formen aus biogenen Quellen: ─ feste Biomasse, wie Holz oder zu Holzpellets verarbeitete Substanz; ─ flüssige Biomasse, wie Pflanzenöl oder durch Vergärung gewonnenes Ethanol; ─ gasförmige Biomasse, wie Biogas; ─ biogene Teile des Abfalls sind eine weitere Variante. Für die Länder der EU sind Angaben über die Energiegewinnung mit Formen der Biomasse in erreichbaren Statistiken nicht durchgehend verfügbar. Verwendbare

Daten zur Nutzung der Biomasse liegen für die EU insgesamt vor (3, S. 70; 7; 19;). Danach wird Biomasse verwendet für die Bereitstellung von:

Abb. 4: Herstellung von Kraftstoffen (Biodiesel und Bioethanol) aus Biomasse in ausgewählten Ländern der EU (Stand: 2011). (Quelle: 19). Der Einsatz von Biomasse für die Stromerzeugung in ausgewählten Ländern ist der Übersicht 2 zu entnehmen. Eine Auflistung der EU- Länder mit Herstellung von biogenen Kraftstoffen gibt die Abb. 4 wieder. Die angeführten Mengen umfassen die Herstellung von Biodiesel und Bioethanol. Es zeigt sich, dass die größeren Länder der EU mit entsprechendem Bestand an Kraftfahrzeugen auch die meisten Energieeinheiten aus Biokraftstoff herstellen. – Die „Erneuerbare- Energie- Richtlinie“ der EU legt unter den Einzelmaßnahmen auch für den Verkehrssektor verbindliche Ziele fest. So sollen bis zum Jahre 2020 mindestens 10% der Endenergie dieses Sektors durch erneuerbare Quellen gedeckt werden (8). Der Einsatz von Biokraftstoffen aus verarbeiteten Pflanzenölen und Getreide wird kontrovers und teilweise recht kritisch beurteilt. Die Darstellung einer eigenen Auffassung würde die hier gegebenen Grenzen überschreiten. Es wird daher auf einschlägige Literatur verwiesen (u. a. 12, S. 108 ff.; 14, S. 72 ff.). In der Richtlinie der EU wird den berechtigten Kriterien durch detaillierte Vorgaben für eine nachhaltige Gewinnung und Verwendung von Biokraftstoffen Rechnung getragen. Diese Vorgaben gelten auch für eingeführte Komponenten. Weitergehend ist eine Reduzierung des geplanten Anteils der Biokraftstoffe vorgesehen und ihr Ersatz durch andere Formen Erneuerbarer Energien im Verkehrssektor.

Wirtschaftliche Aspekte

3.1 Umsätze und Beschäftigung

Der gesamte Sektor der Erneuerbaren Energien wird in nennenswertem Maße von neuen T echnologien geprägt. Neue T echnologien erschließen meistens neue Wirtschaftsfelder mit neuen Arbeitsplätzen und damit verbundenen wirtschaftlichen Prozessen. Bei einer Darstellung dieser Leistungsfaktoren bleibt meistens offen, in welchem Umfang vorhandene, alte Wirtschaftsbereiche ersetzt und ob eine Erweiterung der wirtschaftlichen Prozesse erreicht wurde. Diese Frage bleibt im Folgenden für die Erneuerbaren Energien gleichfalls offen

 Abb. 5: A: Umsätze der mit Erneuerbaren Energieformen befassten Wirtschaftssektoren in der EU (Stand: 2011). B: Beschäftigte in den Wirtschaftsbereichen der Erneuerbaren Energieformen in der EU (2011). (Quelle: 19). Die Abb.5 gibt für die EU unter Ziffer A die im Jahr 2011 erzielten Umsätze durch Erneuerbare Energieformen wieder. Das unterschiedliche Preisniveau der Energieformen bewirkt, dass sich die Relationen im Vergleich zu den erzeugten Energieeinheiten (vgl. Übersicht 2) deutlich verschieben. So weisen Solarstrom und Biokraftstoffe höhere Umsatz- als Endenergie- Anteile auf. Eine weitere Abweichung ergibt sich dadurch, dass die Umsätze größerer Wasserkraftwerke offensichtlich nicht erfasst sind. Die Zahl der Beschäftigten weist nennenswerte Abweichungen zum Umsatzanteil der Energieformen auf. Dies ist Beleg für eine unterschiedliche Arbeitsproduktivität in den Wirtschaftssparten, die das wirtschaftliche Umfeld der Energieformen bilden.

3.2 Umsätze und Wertschöpfung in ausgewählten Ländern

Die Abb. 6 gibt die mit Erneuerbaren Energien erzielten Umsätze für ausgewählte Länder wieder. Weiterhin sind zwei geschätzte Varianten der Wertschöpfung angeführt, alternativ für 20% und 30% vom erzielten Umsatz. Diese Varianten decken den wahrscheinlichen, mittleren Bereich der erzielbaren Wertschöpfungsraten ab. Der Begriff der Wertschöpfung umfasst (nach Abzug der Sachkosten vom Umsatz) das verbleibende Gesamteinkommen in den Wirtschaftszweigen (vgl. 21, S. 82 f.).

Abb.6: Umsätze Erneuerbarer Energien in ausgewählten Ländern der EU mit geschätzten Varianten der Wertschöpfung (Wertschöfung1: 20% vom jeweiligen Umsatz; Wertschöpfung 2: 30% vom Umsatz). (Quelle:19; eigene Berechnung). Neben dem Gewinn beinhaltet die Wertschöpfung die erwirtschafteten Lohnzahlungen (Arbeitskosten), Kreditzinsen, Pachten sowie die zu zahlenden Steuern. Im Vergleich zu großen Wirtschaftszweigen liefern die Erneuerbaren Energien einen zwar bescheidenen, aber nennenswerten Beitrag zur gesamtwirtschaftlichen Wertschöpfung.

4. Literatur (Auswahl)

1. Bokermann, R. 2011: Wirtschaftliche Struktur u. regionale Beiträge der Windkraft. Erweiterter Sonderdruck, Ecovast Report No 48, Eastleigh.

2. Bundesministerium f. Umwelt, Naturschutz u. Reaktorsicherheit, 2009: Erneuerbare- Energien- Gesetz (EEG) 2009. BGBl. I, S. 2074 ff., Berlin.

3. Bundesministerium f. Umwelt, Naturschutz u. Reaktorsicherheit, 2013: Erneuerbare Energien in Zahlen. Berlin.

4. Bundesumweltministerium, 1996: Umweltpolitik. Konferenz d. Vereinten Nationen f. Umwelt u. Entwicklung – Dokumente - . Berlin.

5. Eder, B. (Hrsg.), 2012: Biogas Praxis. ökobuch Verlag, Staufen b. Freiburg.

6. Ehricke, U., 2013: Energierecht. Nomos Verlagsgesellschaft, Baden– Baden.

7. Europ. Amt f. Statistik, 2013: Internetdatei Eurostat, Haupttabellen Umwelt u. Energie. Luxemburg.

8. Europ. Parlament / Rat d. Europ. Union, 2009 : Richtlinie 2009/28/EG. Amtsblatt d. Europ. Union, L 140/16, Brüssel.

9. EWEA – The European Wind Energy Association, 2013: Wind in Power/2012 European statistics. Internetdatei www.ewea.org.

10. Gleitmann, S., 2010: Erneuerbare Energien. Hydrogeit Verlag, Oberkrämer.

11. Jenkins, D. (Hrsg.), 2013: Renewable Energy Systems. Verlag Routledge, London/New York.

12. Kempf, H. / P. Schmidt, 2011: Erneuerbare Energien. Verlag WEKA MEDIA, Kissing.

13. Kohl, H. / W. Dürrschmidt, 2012: Regenerative Energieträger – ein Überblick. Erneuerbare Energien, S. 4 ff.. Hrsg. Th. Bührke / R. Wengenmayr. Verlag Wiley- Vch, Weinheim.

14. Kreysa, G., 2012: Irrungen und Wirrungen um Biokraftstoff. Erneuerbare Energie, S. 72 ff.. Hrsg. Th. Bührke / R. Wengenmayr. Verlag Wiley – Vch, Weinheim.

15. Kühn, M. / T. Klaus, 2012: Rückenwind für eine zukunftsfähige Technik. Erneuerbare Energie, S. 14 ff.. Hrsg. Th. Bührke / R. Wengenmayr. Verlag Wiley – Vch, Weinheim.

16. Mertens, K., 2011: Photovoltaik. Carl Hanser Verlag, München.

17. Observ’ ER, 2013: Photovotaik Barometer. Le journal du photovoltaique, No 9. Internetdatei www.energies-renouvelables.org.

18. Observ’ ER, 2013: Solar Thermal and Concentrated Solar Power Barometer. Le journal du photovoltaique, No 215. Internetdatei www.energies-renouvelables.org.

19. Observ’ ER, 2013: The state of renewable Energies in Europe, 12. Observ’ER report. Internetdatei www.eurobserv-er.org/.

20. Quaschning, V., 2013: Erneuerbare Energien u. Klimaschutz. Carl Hanser Verlag, München.

21. Schulte, A., 2003: Entwicklung eines Konzeptes der Nutzwertanalyse f. Projekte d. ländlichen Förderung. Cuvillier Verlag, Göttingen.

22. Statistisches Bundesamt, 2013: Erzeugung von Primärenergie 2011/EU 27. Internetdatei www.destatis.de/Europa/DE, Wiesbaden.

23. Stolten, D., 2012: Wasserstoff: Alternative zu fossilen Energieträgern? Erneuerbare Energie, S.128 ff.. Hrsg. Th. Bührke / R. Wengenmayr. Verlag Wiley- Vch, Weinheim.

/Discussion /Links

List of Subpages (will be changed to children only if the mass accumulates)

16 pages:date of last change
Energy/Examples/Self-Reliance+UseOfLocalResourcesJuly 6, 2014 13:29
Energy/NewsJuly 27, 2009 9:46
Energy/ExamplesNovember 7, 2008 7:46
Energy/BiofuelsNovember 6, 2008 13:54
Energy/DiscussionJune 29, 2008 16:55
Energy/LinksMay 24, 2008 12:16
Energy/Examples/WaterEnergyDecember 17, 2007 0:14
Energy/Examples/ThermalEnergyDecember 30, 2006 12:23
Energy/Examples/ThermalEnergy/SouthhamptonDecember 30, 2006 12:23
Energy/Examples/Tidal energyDecember 30, 2006 11:53
Energy/Examples/WindEnergyDecember 30, 2006 11:49
Energy/Examples/SolarEnergy PassiveDecember 30, 2006 11:47
Energy/Examples/SolarEnergy ActiveDecember 30, 2006 11:46
Energy/Examples/UseOfBiomassDecember 30, 2006 11:44
Energy/Examples/EnergyConservation+BuildingsDecember 30, 2006 11:38
Energy/ContextDecember 29, 2006 16:46


Energy and its relation to rural well-being    

Table of contents of this page
February 2014 (UPDATE 2018)   
Renewable energy in the EU Online - Work 1/2014   
Energy and its relation to rural well-being   
Editorial History   
Rural Europe   
The energy agenda   
Connecting the two agendas   
Use of local resources   
Use of biomass   
Solar energy, both passive and active   
Wind energy   
Water energy   
Thermal energy   

This is a HyperText version of the paper presented to the ECOVAST General Assembly and Conference in Bratislava in October 2006. It is modified for Dorfwiki to create a collaborative venue for further augmentation. Thus it makes use of the ability of Dorfwiki to create fractal subpages and subwikis. In particular, we need more and workeable examples and links to good documentation.

One day a book on good practises might emerge from this by concatenation of these pages.

Editorial History    

Ideas towards a draft ECOVAST Statement

This paper was available for discussion at International Conference, Hotel SUZA, Bratislava, Slovak Republic, October 16, 2006

Originated by Michael Dower, edited and augmented by PhilTurner, with additions provided by ArthurSpiegler

Some examples are given in the Appendix. Other, better examples are welcomed for inclusion.


ECOVAST’s aim is to promote the well-being of the people and the heritage of rural Europe. This mission is a permanent commitment, but it has to be constantly updated as the forces affecting the rural areas change. One crucial area of change is in the field of energy, with rising public and political concern about long-term supplies of fossil fuels, the impact on the world’s climate of continuing to burn those fuels, and the need to promote both energy conservation and alternative sources of energy. This wide agenda poses both a challenge and an opportunity to the people, the economies and the environment of rural Europe.

Rural Europe    

The rural regions of Europe are currently facing a period of significant change in the problems and possibilities that they must address and in the policies that apply to them. These forces vary from country to country, and from region to region. But many issues have wide application. These include :

   •	Change in systems of public support to farmers, which oblige farmers to focus more strongly on those products or activities for which there is a viable market

• Desire among many farmers to diversify their sources of personal or family income

• Concern about unemployment, under-employment or low incomes in the rural areas, leading to out-migration from these areas ... and a consequent desire to create jobs in the countryside

• Concern about poverty, social exclusion and other suffering in the rural areas

• Desire to sustain the quality and accessibility of public services in the countryside

• Desire to protect the quality of landscapes, wildlife and the cultural heritage of the countryside

• The ‘sustainability’ agenda, with its focus on living within the environmental limits imposed by the planet.

The energy agenda    

Rapid growth in the world’s population, coupled with extremely rapid economic growth in many countries (notably China and India) is causing a headlong rise in demand for energy, for use in construction, transport, heating and lighting, industry, agriculture and other economic activity. A very high proportion of this energy is provided by use of fossil fuels – coal, gas and oil. These fuels are mined or extracted in many parts of the world, and the total reserves of them could last for many decades ahead.

But the financial and environmental costs of winning these fuels are rising, as are the political tensions and concerns about security of supply, for example in relation to the supplies in the Middle East and in Russia and the increasingly insatiable demand of China. These factors are reflected in rising prices of fossil fuels. Moreover, there is now almost complete consensus among scientists, and growing acceptance by the public and politicians, that burning of fossil fuels is a major contributory factor to the massive increase in emissions carbon and ‘greenhouse’ gases, which in turn are causing heating of the planet, leading to climate change which is already having catastrophic effect on the people and environments of many countries. It is becoming dramatically and painfully clear that, as a total species and on a planetary scale, mankind must radically reduce these emissions if global disaster is to be avoided.

Governments vary greatly in their grasp of this truth. But throughout Europe, people are realising that – whether governments give leadership or not – patterns of energy consumption must change. There is rising interest in, and increasing practical commitment to, energy conservation and the use of alternative sources of energy.

Connecting the two agendas    

We believe that these two agendas – the well-being of rural areas, and a sane approach to energy – can and must be connected. There is a ‘win-win’ potential here that must be grasped. Key elements in this potential are :


On a global scale, mankind must reduce its call on fossil fuels, which are non-renewable and which contribute heavily to global warming and climate change. Alternative sources of energy are available, or becoming so : but they cannot quickly meet the volume of demand for energy now served by fossil fuels. Therefore a global imperative is to cut down that demand as much as possible.

At more local level, energy conservation can offer high benefits to those who live in rural areas. Where populations are sparse or scattered or distances between settlements are great, as applies in many rural areas, energy from external resources such as petrol or gas can be costly to deliver and may consume a high proportion of low average incomes. Thus the saving of energy may be driven by financial necessity as well as concern about the world’s climate.

Efforts of energy conservation in rural areas can in fact draw upon long traditions of construction, self-reliance and use of local resources.


In many areas, the characteristic buildings are well suited – through the trial and error, the wisdom and skills of the people – to the saving of energy, the avoidance of heat loss, and the economical use of fuels. Consider, for example, the thick timber walls of Scandinavian houses, the thatched roofs of German or Hungarian farms, or the thick stone walls and small windows of alpine buildings. These features, with their natural insulation, keep out the cold in winter and the heat in summer, thus minimising the need to use energy in heating or cooling.

Historic buildings where the ratio of glass to wall is often less than 20%, are better energy conservers than most new buildings. Windows that can be opened provide natural ventilation as well as light. In addition, historic buildings often include interior light/ventilation courts, rooftop ventilators, clerestories or skylights. These features provide energy efficient fresh air and light, assuring that energy consuming mechanical devices may be needed only to supplement the natural energy sources. Any time the mechanical heating and air conditioning equipment can be turned off and the windows opened, energy will be saved. Shutters can be used to minimize the problem of summer heat gain by shading the windows.

In the warmer climates, buildings were often built to minimize the heat gain from the summer sun, with features such as exterior balconies, porches, wide roof overhangs, awnings and shade trees. Many of these buildings were designed with the living spaces on the upper floor to catch breezes and to escape the radiant heat from the earth's surface. Exterior walls were often painted light colors to reflect the hot summer sun, resulting in cooler interior living spaces.

Older buildings use less energy because they were built with a well-developed sense of physical comfort and because they maximized the natural sources of heating, lighting and ventilation. The historic building owner should understand these inherent energy-saving qualities. (Conserving energy in Historic buildings http://www.cr.nps.gov/hps/tps/briefs/brief03.htm)

Action to sustain these building traditions can serve a double purpose – to maintain the distinctive character of buildings, settlements and landscapes in each region, and to conserve energy.

See Appendix 1 for Examples

Building regulations and historic buildings, English Heritage 2004


In past generations, rural communities were more introverted that they are now. With poor roads and slow vehicles, they could not go quickly and easily to distant towns to shop or work. Thus they relied on local services, such as the village shop, post office, doctor, miller or blacksmith. They did not depend on fossil fuel, as millions of rural people do today, to travel to towns or to receive goods sent to them from all over the world. They were practicing a form of communal self-reliance.

We cannot readily revert to life as it was before the tarmacadamed road and the internal combustion engine. But we can seek a modern version of this communal self-reliance. For social reasons, rural communities throughout Europe are seeking to sustain their local services, very often though communal effort such as the launching of community shops or community bus services. There is growing effort to create jobs in the villages, so that people do not need to travel to distant towns to find work. Such action can enrich social life and conserve energy.

See Appendix 1 for Examples Güssing, Austria

Pellworm Island, Germany

Use of local resources    

In past generations, rural communities used local resources to provide their energy. Most widespread was the use of firewood, which is still the main fuel for millions of rural households. In other areas, people used peat, oil-shale, surface coal, even mined coal. They harnessed the wind, or the power of water, for milling wheat, sawing wood, weaving, making paper, and many other craft and industrial purposes, all on a local scale. They used animals, rather than petrol-driven machines, for drawing ploughs, for powering fruit presses and for transport.

These resources, and these uses, are still with us today and are more widely available and viable than is sometimes realised. Our modern understanding, for example of the need to moderate carbon emissions and to safeguard wetland habitats, should oblige us to use resources in a sustainable way. This implies a focus on what is renewable, and on efficiency and avoidance of harmful side-effects. But the well-judged use of local resources can save the import of fossil fuels, and keep money and create jobs within the rural economies.

See Appendix 1 for Examples Pellworm Island, Germany


The large-scale production of energy, and particularly of electricity, has brought enormous social and economic benefit to the people of Europe, indeed it has made possible the growth of cities. Rural people too have benefited from reliable supplies of electricity or gas coming by wire or pipe to their villages and homes; and this has prompted many millions of them to move away from use of local fuels for cooking, heating or lighting.

Until quite recently, this flow of energy has been one-way, that is from the major regional power stations to the urban or rural consumer. But the rising costs of this energy, and the opening up of energy-supply markets, have recently prompted growing interest in the local generation of energy. Such generation is, in general far more easily done in rural than in urban areas, for the reason that the countryside offers the necessary space and resources. A growing number of rural communities or rural entrepreneurs are investing in heat-and-power plants, based on local waste materials or on biomass, or in water turbines, solar panel complexes, wind turbines etc, in order to meet local energy needs and also in some cases to feed into the regional or national grid, thus creating a two- way flow. This can save money and create jobs in the local economies and (if it became widespread) could obviate the need for yet more massive and increasingly problematic generation at regional or national level.

Locally generated energy requires a heat station or small power station that can be sited within a built-up area or otherwise designed to minimise visual impact within the landscape. Combined heat and power (CHP) maximises the efficiency of heat stations by generating electricity and producing hot water for space heating in buildings. Distribution of hot water for district heating by means of a network of pipes throughout a small town or neighbourhood is a common feature of urban areas in many parts of central and eastern European states. There are examples in Denmark of District Heating, derived from many rural sources such as biomass and animal residues, that serves a wide area of a town.

See page with Examples Pellworm Island, Germany – wind turbines and solar ‘farm’ owned and run by the local community.


Use of biomass    

Biomass is any substance containing non-fossilised carbon. The largest single source of energy for rural communities in most of Europe, up to one hundred years ago, was firewood. For millions of rural people, it is still the main source of energy for cooking and heating. It involves hard work for the user or the local supplier, but is a dependable and renewable resource. The continued use of firewood can sustain jobs in the countryside, stimulate the sustainable management of woodlands, keep money in the rural areas, and reduce dependence on fossil fuels and imported energy. Its adverse effects, including the release of carbon into the atmosphere, can be moderated by the use of modern techniques of preparation and combustion of fuel; and this innovation is now extending also to use of biomass fuels other than wood from traditional forest trees.

The modern techniques include :

  • the use of fuel-efficient stoves and boilers, such as the ‘Jotul’ stoves of Norway or the Swedish ‘Aga’
  • the introduction of wood-chipping machines and wood-pellet plants and of boilers fed by these fuels
  • electricity generators based upon burning of biomass, which may be sawmill waste or crops (such as miscanthus or fast-growing willow) grown specially for the purpose
  • extraction or distilling of methane or ethanol from biomass, such as sugar beet or animal manures. Conversion of animal waste including carcasses, using heat and pressure to produce 42 gallons of hydrocarbons (diesel fuel) from one ton of carbons (fat, bone and protein).
Such techniques can have the added benefit that they offer to European farmers new markets for non-food products. The viability of the widespread application of these techniques has still to be proved, and their environmental impacts must to be closely scrutinised, but they appear to offer significant opportunity for many rural communities.

See Appendix 1 for Examples

Energy grass, Hungary Denmark Biofuels UK Finland

Solar energy, both passive and active    

The sun is the indirect source of all the energy that we use – coal, oil, gas, nuclear power, water, wind, biomass and geothermal energy. But its energy can also be used directly. For example, in Cyprus, almost every house has on its roof a solar panel and hot-water tank, which provides most of the hot water used by the household. Modern technology, and modern understanding of thermal systems, allows the sun’s heat or light to be tapped, in ‘passive’ or ‘active’ ways, to provide energy for homes, businesses or whole communities.

‘Passive’ solar energy is that which is caught, through the skilful design of buildings, in the structure of those building or in the air or water circulating within them, and which is then released over time or when needed.

See Appendix 1 for Examples West Oxfordshire UK

‘Active’ solar energy is that which is caught by photovoltaic cells or other mechanisms and converted into electricity or heat. These mechanisms are not dependent on sustained direct sunlight : they can draw energy from light or atmospheric heat even on over-clouded days. As fossil fuels, or electricity based upon those fuels, become more expensive, so the comparative costs of active solar energy fall. Solar panels on roofs are becoming increasingly common on both new and pre-existing buildings : with careful design, they can blend into the distinctive local patterns of the built environment which are part of the valued character of rural Europe.

See Appendix 1 for Examples Ancient Greece, modern Austria and Germany

Wind energy    

Europe – with its Atlantic coast, its mountains and broadly temperate but volatile climate – has tremendous resources of wind power. The wind has indeed been used for many centuries, for example in the corn mills of Crete or Majorca, with their sails of cloth, or the array of wind-driven pumps which sucked water out of the land below sea level in the Netherlands. But the modern technology of wind turbines has transformed the scale of this activity. It is now possible to generate great amounts of electricity from turbines mounted high on the windiest mountains, such as the ‘Gates of Hercules’ in south-west Spain, or on the flattest sea-coasts such as those of Jutland in Denmark.

Such turbines prompt a key question - ‘who benefits?’ In the case of many big ‘wind farms’ (i.e. large complexes of turbines, installed and managed by large commercial companies – the benefits accrue mainly to those companies and to those who run or take electricity fro the national grids). At local level, there may be significant benefit in rental income for the owners of the land on which the turbines stand : but other local residents gain no benefit, no local jobs arise, and the local community must live with the visual intrusion of the turbines and associated transmission wires. The threat of this visual intrusion leads to strong opposition to wind farm developments in many places.

However, rural communities may gain far more benefit if they themselves initiate and manage the wind turbines. This pattern of local initiative was directly encouraged by the Danish government in the 1970s and 1980s, when the use of wind power was spreading in that country. The result is a landscape of small clusters of one to three turbines, on a farm or beside a village, controlled by the farm or local community, bringing income to local people or saving the cost of imported energy, and actually contributing also to regional or national supplies.

See Appendix 1 for Examples Denmark

Water energy    

Water, like wind, is in plentiful supply in Europe. In terms of energy production, its most usable form is in mountain rivers. That is why the early use of water power, through water wheels of various kinds, was found in the hills, and why, for example, the industrial revolution in England had a major focus in the water-rich valleys of the Pennines.

Today, the use of water power to drive corn mills, weaving factories and other works has mainly been superseded by other sources of energy. But in mountainous countries - such as Norway, Switzerland and Wales – water power is a major source of electricity. The generators, like the big wind farms, are mainly controlled by big companies or public agencies, and the benefits to local communities may be few – although the reservoirs associated with hydro-electricity may actually serve to attract tourists, bringing jobs and income to the areas, and may be assets in terms of landscape and wildlife. However, water power, like wind power and other alternative energy sources, can be locally initiated and controlled. Modern water turbines, of small or medium size, can be installed even on modest streams and can bring savings or income to individual farmers, householders or whole rural communities.

Coastal areas often serve rural hinterlands. Sea located turbines can capture tidal energy

See Appendix 1 for Examples

Micro hydro at historic watermill in Whitchurch Hampshire England Tidal energy, Kirkwall, Island of Orkney, Scotland

Thermal energy    

Certain dramatic features of Europe – such as the hot springs of Iceland or the volcanoes of Etna and Vesuvius – remind us that the earth boils beneath our feet. This is a further source of energy which can be tapped. Thermal energy has indeed long been used, for example in the spa towns which use warm up-springing waters in the limestone regions of England, Hungary, Slovenia, Croatia and other countries. There is potential for more such uses of thermal energy in such regions. But the modern technology of heat exchange allows energy to be tapped from subsoil, groundwater or even air, in places where no extreme of temperature is found. Such technology can be wholly unobtrusive, built into the design of new buildings or into adaptation of earlier buildings. Once installed, it takes very little effort or applied energy to maintain.

See Appendix 1 for Examples

Italy groundwater heat exchange at hotel in former monastery, hot summer seawater stored in ground for winter use

West Oxfordshire UK

Geothermal heating of city centre Southampton UK

Policy implications

1. There is need for increasingly close liaison and collaboration between those who are concerned with the well-being of rural communities and those who advocate the use of alternative sources of energy.

2. Rural communities throughout Europe should accept that, as citizens of the world, that they share the responsibility to live within the planet’s limits, to cut the emissions of carbon and ‘greenhouse’ gases and thus to moderate the potentially catastrophic change in the world’s climate.

3. Rural people, collectively and individually, should therefore undertake energy audits of their homes, their businesses, their enterprises, services and transport. They should consider in a radical manner how they may reduce their use of energy (particularly that arising from fossil fuels); and how they may use the opportunities (which will vary from one rural area to another) to tap energy from local resources of biomass, sun, wind, water and thermal energy.

4. Governments should review their policies related to energy production and distribution, transport, housing, agriculture, forestry, rural development and related sectors, with a view to promoting energy conservation everywhere and the resourceful, imaginative and sustainable use of all sources of energy which will bring benefits both globally (crucially in reduced emission of carbon and greenhouse gases) and locally in terms of local control of energy generation, local income and jobs and sustainable impact on local resources, ecosystems and landscapes.